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Abstract. The level spacing distribution of the two-dimensional harmonic oscillator is studied.
By choosing a suitable average, a stable distribution is obtained. This is then shown to have a
fixed form for the generic frequency ratio. A delta function is also found for a dense class of ratio
(with Hausdorff dimension%). Thus the distribution is unstable under perturbation of the ratio.
All of this differs from the universal Poissonian statistics associated with integrable systems.

1. Introduction

Studying dynamical systems on the macroscopic scale, i.e. classical level, the linearity or
nonlinearity of the system gives rise to integrable and possibly chaotic systems, respectively,
with various mixed states between. When the system is studied at the microscopic level
guantum mechanics is involved. The main tool of application is &thger's equation,

which is inherently linear whether the original system is linear or not. The question then
arises as to what happens to the properties of the classical system (such as chaos) in the
transition to the quantum scale, and what clues the quantized system give towards the
behaviour of the classical system.

For a classically bounded system a discrete set of energy eigenvalues for the quantized
system is obtained for which the statistics have been studied extensively. One such statistical
measure is the level-spacing distribution. Here the spacings between consecutive levels are
first normalized to have an average of unity and then the probability distribution arising
from these spacings can be defined.

Certain universality classes of distributions have been observed corresponding to the
type of classical system of interest. A classically chaotic system has statistics associated
with those of the eigenvalues of certain random matrix classes; see, for example, [1-
4]. For a system with time-reversal invariance, the statistics obtained from the spacings
between the eigenvalues of the Gaussian orthogonal ensemble of real-symmetric matrices is
found, without the invariance, the statistics from the Gaussian unitary ensemble of complex
Hermitian matrices is found. For a classically integrable system the Poissonian statistics of
random systems are observed. This last class has been derived in Berry and Tabor [5].

For a classically integrable system the spacing distribution can be introduced in the
following manner. The physical system will have a Hamiltonta¢p, q) dependent upon2
momentum and position coordinatpsand g, respectively. If the system is integrable then
we can parametrize phase space by the action and angle coordiratelsx respectively,
which shows the Hamiltonian to be dependent upon the action coordihairl/, and so
has anf variable dependency; see, for example, [3,6]. We are then able to quantize as
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follows. We have the Hamiltonia#f (I) so puttingl = hm gives energyE,, = H(hm).
Then the value€,,, are quantized energy values whenewetis part of the integer lattice;
see [6, 7] for more details.

For systems that will be investigated, componentd adre all non-negative, thus we
are only concerned with non-negative coordinates of the lattice.

For each value of energy there is a family of surfacemirspace that fill out the space
from the origin, as energy increase® (space is the action spademagnified by a factor
1"). Thus denoting’ as the (hyper)volume enclosed by the surface and the boundaries of
the positive Z-ant (from here on referred to as the positive quadrant), then the eBeig)y
a monotonic increasing function &. Then we can label the values of energy and volume
at which a lattice point is intersected (with multiplicity where the spectrum is degenerate)
asE; andU;, respectively, wheré&; .1 > E; andU;;, > U,.

Since we are considering the unit lattice, over an interval of enér@ly the number
of lattice points moved through by the energy surface will be best estimated as the change
in volume AU, thus the normalization factor required to give an average spacing of unity
will be dU/dE. Then from the Taylor expansion, for large enough

du
Up—U >~ (EH_l_Ei)diE 1)

provided thatE(U) behaves sensibly (not exponentially divergent for example). The
probability distribution is then introduced as follows. First count the number of values
U; < U that give a spacing in the intervéd, s + ds), and divide this by the total number

of U; values undel/, i.e. U. This ratio defines the distributioR(s, U). The level-spacing
distribution P (s) is then defined by lim_ o, P(s, U).

Note that for chaotic systems and mixed systems no such parametrization exists. In the
mixed KAM systems, for example, although some invariant tori do exist that could possibly
be parametrized by coordinates, in between lie chaotic horseshoe structures that fill out
phase space and so defy any such coordinate scheme. Thus the quantization procedure is
unworkable, and the resulting theory inapplicable.

Berry and Tabor [5] apply the method of stationary phase to olfdi) = e *. The
proof, however, assumes a curved energy surface in phase space, convex from above. For
harmonic oscillators the surface is flat and the method breaks down. The following work is
largely a continuation of [5] and that of Pandeyal [8, 9], in which it has been observed
that harmonic oscillators have a degree of level repulsion, and no fixed spacing distribution.
The average over energy was also shown to have an oscillatory behaviour.

The problem is equivalent to studying the behaviour of the normalized spacings between
successive terms&w + n wherem andn are non-negative integers andis a fixed, real
parameter. Thus the problem is one expressible in terms of number theory alone and can
be seen as a question independent of physics if so desired.

In section 2 the results of [5, 8, 9] are derived in a different fashion in which the spacings
for the two-dimensional harmonic oscillator are found and the level-spacing distribution
shown to be oscillatory. In sectid3 a suitable average is taken for which a stable limit is
shown to exist. Sections 4 and 5 calculate the average for various values of the frequency
ratio, including the generic case. Concluding remarks follow.

2. The spacing distribution

The spacings between the levels are now determined exactly, which is then used to
investigate the spacing distribution. For the two-dimensional harmonic oscillebeio)
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with frequenciesw;, w, the Hamiltonian and the area enclosed by the energy surface
(normalized by a factoh=2) in the positive quadrant of phase space are (see [7,10] for
example)
HD)=w-I
giving
(w - m)?
Um)= ———"— < moa+my=~2aU 2)
20)10)2
wherea (= w1/wy) is the frequency ratio.

Consider the surface to be initially through a lattice pdint, m,), then increase the
areaU until another lattice pointm’, m5) = (m1,mp) + v is reached. If we put the
respective areas d$ and U + AU then the spacing obtained is simply the difference in
areaAU by (1). The vectow = (x, y) will be referred to as the shift vector (note that
and y have opposite sign). Then the spacing is

12U
s =,/ —xa-+y. 3
o

This does not take into account the possibility of degeneracy among the energy levels.
For such a system the frequency ratids rational, sayp/q. In these cases, the next lattice
point that the surface passes through is found from solutieng) to the equation

xp+yqg=1

This has of order,/2U/pg solutions (x, y), that each give a shift vector pointing to a
lattice point, with positive coordinates. Thus for every non-zero spacing, there are of order
/2U/pq zero-spacing contributions that arise from the degeneracy. Thdi as co
there is an accumulation of zero-spacing contribution®te, U), so a delta function at
the origin is obtained for the spacing distributid{(s) in the limit U — oco. Thus unless
the distributions for the irrational cases are all delta functions, the distribution is not stable
with respect to perturbation of the frequency ratio. We now consider the irrational cases.
From equation (3) the minimization ¢fo — y| is required so thagny, m5) is the next
point the energy surface passes throughl/as increased. Continued fractions are the ideal
tool for doing this.
Irrational valuesx have an infinite continued fraction, (see Hardy and Wright [10] for
more details) where
azz—;:[ao,al,az,...]zao—i—% 4)
ai +

az+-.
for positive integers:; (ap may be zero). There are also the convergents
Pn
n
which tend toa asn — oo. In order to determine the spacing disribution, the first step is

to obtain an analytic expression for the spacings. The following lemma allows the spacings
to be determined exactly.

=[ao, a1, ..., a) %)

Lemma 1.1 If x < g,+2, then the only values, y such that

—gu + py for oddn

O<xa+y< {
qn0 — pp for evenn
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are the values
(—4n — Tqn+1; Pu + Ppt1) for odd n
(Gn + rqns1, —Pn — FPp+1) for evenn
forre{0,1,2,...,a,.2— 1}, where|xa + y|,11 < |xa + y|,.

(x,y) =

Proof.  First define

X = [iqn + Vqni1 Y = WPn + VP41 (6)
which, with the relation (see [10])

Pnqn+1 — Pn+1qn = +1

gives
w=E(Ygnt1 — XPny1) V= +(yqy — Xpy)
meaningu andv are integers. Thus
O<—xa+y<—q.@+ py for oddn
O<xa—y<qgux—p, for evenn
becomes
0 < u(—=gne + pn) + v(—=Gn10 + puy1) < —gnet + pn for oddn e
0 < p(gnet — pp) + (gn41& — Pnt+1) < @u — Py for evenn.
Now if g, = a)g,—1 + gn—2, Wherea) = [a,, a,+1, . ..], then we have
—1"
o P DT @8)
qn ann+1
Then applying this to both right-hand inequalities in (7) gives
uw—1 v
S
9nt1 Dni2
Then noting that
q1,1+1 /
=a
f],,1+2 n+2
we obtain
v=a,, ,(n—1).
Similarly, in both cases the left-hand inequality is equivalent to
V
O</L— — = v <a, .
i1 942
So whethem is even or odd
d(n—1 <v <du. ©)

Considering (6) withx > 0 and the right-hand side of (9) gives the conditjon- 0. Also
the left-hand side gives > (u — 1)q,,, + ¢, butx < g,42 SOu < 2. Thus sinceu is an
integeru = 1 giving
O<v<a,,
but (6) also means < a, 2 if x < g2, SO
1 v

xe+y=— ;
qn+1 qn+2

which decreases with, thus completing the proof. O
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These two results are then used to determine the spacings. This is described below.
Theorem 1 For a pointm = (m1, m») in the positive quadrant of the lattice such that
Gn +rquir <my < qp+ (0 + Dgpia 0<my < ppy1 for odd n
0<m1 <qun1 Pntrpurr <mz < pp+(r+1pua for evenn
with r € {0,1,2,...,a,.2 — 1}, the spacing ain is
2U(m) | —(qn +rqns1)ot + (Pn + 7Puy1) for oddn
{ (gn + rgn+1)e — (pn + rPppt1) for evenn.

s(m) =
o

Proof. Firstly consider the case whereis odd. First assume that the next lattice point
passed througlwn’ is right of m, as perceived from the origin. Thus the coordinates
are positive and negative, respectively. Then we have the bpund p,.;. But from
lemma 1.1

xa + y > (CInfl + (Qn+l - 1)6111)05 - (pnfl + (an+1 - 1)pn)
= (gn+1¢ — pn+1) + (=gu + pp)

whereas if the next lattice poimt’ is left of m as perceived from the origin, the coordinates
x,y are negative and positive respectively, and

X+ y < =g + P

which is a smaller spacing, thus the spacing corresponds to the latter. Then from lemma 1.1
we see that the minimum spacing such thatlies in the positive quadrant is where

xa+y=—(gp +rqu1) + (pu +rppy1).
The case of: odd is analogous with

xa+y = (gn +rgn+1) — (pn + rpat1).
Thus the theorem is proven. |

The regions described above fill out the quarter plane so the spacings at all points
are known. The rectangular regions shall be denoted as B)xes/here convenient. This
is illustrated in figure 1, so for any lattice point that lies inside the % indicated
(including the bottom and left side of the box only), the vector that determines the spacing
is of the form(x, y) = (—¢, —rqu+1, pn+7rpas1). This result has been derived in a different
fashion by Pandewt al [8,9]. There the values ofi;a + m, over intervals M, M + 1]
are considered al — oo.

The level-spacing distributio® (s) is determined as follows. First evaluate the number
of pointsm with spacing in the intervals, s + As) such thatm is below the energy surface
with arealU, and divide this by the total number of points within the surface bounding
(which will be U itself as lattice points have density unity in space). This will give a
distribution P (s, U) that estimates the level-spacing distributiBiis). Then take the limit
of this asU — oo (if it exists). SoP(s, U) is defined by

s+As
[ P(s,U)ds = %#{m|s(m) € (s,s+ As),U(m) < U}

=Uu? > 1 (10)

{m|s(m)e(s,s+As),U(m)<U}
where # counts the number of points in the set, and
P(s) = lim P(s,U).
U—o0
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Figure 1. Spacings from the energy surface.

This limit does not exist for the following reasons, however. Consideas it increases
from Up >~ Jag? to Uy =~ 1ag?,,, i.e. as the surface moves through boi@%;g’l B,.,.
P(s, Up) is then defined from%aq,f spacings, but by the tim& = U, the spacings that
make upP (s, Up) account for%aq,f out of %aq3+2 spacings forP (s, U1), thus they account
for a proportion(g,/g.+2)? of P(s, U1) which can be made as small as we like by taking
large values foe,+1 Or a,4+2. SO P(s, U) is largely dependent upon the boxBs, that the
energy surface is passing through and the previous boxes soon lose impacP (spdh
asU increases.

From [11] the behaviour of the sequengeis ergodic, implying that the behaviour of
P(s, U) is largely ‘random’, so no limit is to be expected generically for— co.

Also from [11] we have the result that for genesic

~In 7
lim —4"

oo n 12In2
suggesting that the box dimensions increase exponentially. Thus to obtain a convergent
expression it would seem sensible to average over an exponential rarlge dhis is
defined in the next section and shown to be convergent far.all

s0 g2~ &7 /"2 for largen, (11)

3. The exponential average
PuttingU = €Y, the exponential average is defined by

- o1V
P(s) = lim = P(s,eVydw
V—ooo V 0
which on substitution of (10) reduces to

s+As 1 1

P = lim — -

/ () ds = lim_ > U(m)~™. (12)
s {m|s(m)e(s,s+As),U(m)<e"}

In what follows the sum over all points will be turned into a sum over the bakgs

for n < N and the limitV — oo converted to the limitv — oco. Then considering the

contribution to/**** P(s) ds from points inside the boxeg), .y s By.,

s+As ) 1 apy2—1 .
/S P(s)dszzv'i“oov{z > > UGm) +E(N)}

n<N r=0 {m|s(m)e(s,s+As),meB,,}
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where 2IMgyi2 + gy+1) <V < 2In(gn+3 + gni2) @and E(N) arises from points bounded
by the energy surface and box8s, with n > N, i.e. from the se{fm|m € B,,, n >
N andU(m) < €”}. Now there is the bound

E(N) < Z U(m)™t

{mliaq},,<Um)<ialgniatansa)?)

so considering the strip of points parallel to the constant energy surface that hit dods
along the interval, x + Ax wherex € (gy+1, gnv+2 + gn+3) then these points will have
the samdJ value for smallAx and the number of such points is the area (up to O{13)
Then

2
AA = axAx and Ul= —
ox
SO
E(N) < / M2 4o <qN+2 - q””)
qN41 X qnN+1

Then to estimate the total error, using the bounds/on
E(N) - IN(gn+2 + gn+3) — IN(gn+1)
v In(gn+2 + gn+1)

which will be seen to tend to zero @& — oo in the examples that follow. Approximating
V by 2Ingy will also have no effect. So

s+As - ] 1 apy2—1 B
/S P(s)ds = lim 2ingn >N > U(m)~ ™. (13)

n<N r=0 {ml|s(m)e(s,s+As),meB,,}

Now define
s+As
/ P, (s)ds =1 > U(m)™? (14)
N {m|s(m)e(s,s+As),meB, ,}
o)
. 1 apy2—1
Ps) = lim N Z;v ; P, (). (15)

For a pointm in the box B, , the spacing is, by theorem 1

s(m) =

2U
= (im) [(gn + rgni)a — (pn +rppga)l. (16)

So inside any particular box as the energy surface sweeps through it with incrégsing
s(m) increases monotonically with it. Thus if there are any points with spacing in the
interval (s, s + As) they will lie in a strip parallel to the energy surface.

Let z be the place the strip first hits an axis (i.e. the axgsand m, for n odd and
even, respectively) with (small) variationz. The area of the stripAA, will (at least
asymptotically) be the number of points By , with spacing insidds, s + As). For small
Az, all points will have the sam#& value of

OlZ2

— for n even

% for n odd.
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Also

aAz(z = (gn +7rgny1)) Gn +1qny1 <2 < g + (r +Dguqr
aAz(gy + (r + Dgny1 — 2) G+ +Dg1 <2< g+ T+ 2quta

AA =

for n even, and fom odd

Az
—(z — (pn +7Pps1) Pn+ 11t K2 < pr+ T+ Dpupa
AA=1] ¢

Az
7(17:1 +(r+ 2)pn+l —2) Dn+ (r + 1)pn+l <z<p,+ @+ 2)pn+l-

Note that substitutingez for z in the odd case converts it into the even, so for anye
have

az
U=—
2
and
Aa = | 9B2E = @+ 7gn1) Gn +7qn41 < 2 < gn + (r + Dgnsa
alAz(gy + (r + 2)Gus1 — 2) gn + (r + Dgn1 < 2 < gn + r + Dgpia.
Now
s(m) = z[(gn@ — pp) + 1 (qui10 — pny1)l
ds

= a = |(‘Zn0l - pn) + r(%-ﬁ-l“ - pn+1)|

so by (13)
s+As 1 2

\[ Pn’r(s)dszéaiZZAA

yielding
Az .
?(z — (qn + 7 qn+1)) if gu +rqni1
s+As <Z< n+(r+1 n
/ Py () ds = N q Yn+1
! ?(qn + (r +2)Gny1—2) if g, + (r + Dgpq1
<z < qn + (}" + Z)Qn+1-

Small Az gives d/dz >~ As/Az, so

S — S0

2
Pn,r(s) = st_ s

if so<s <51

if s1<s <52

52

where
si = (qn + (r +)qnrD1(@nt — pp) + 1 (gny1@ — puto)l.
Then using (8)
n ] 1_ n n 1
=(x +r+Q—ry,) wherex, — q D=
1+ XnYn qn+1 an+2

i

Thus we have
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Theorem 2 For« such that
lim IN(gn+2 +gnis) — NG
N—>o0 IN(gn+2 + gn+1)

the level-spacing distribution averaged over an exponential ran@e adnhverges to

0 a7)

(l,,+2—1
P(s) = lim P,, 18
() = lim InanZ[:V ; MO (18)

provided the limiting sum exists, where

s — 80 .
— if so<s <5,
Pn,r(s) = s S_
2 N .
5 if s1<s <9
S
and
Xp+r+i)A—r i 1
5 = (xn ) .Yn) Wherexn — L, Y= ——.
1+ x,p, dn+1 a,i2

4. Examples of the distribution

The following are examples of the average probability spacing distribution for various values
of «. Berry and Tabor [5] give numerical results for values/, 1/v/5, 1/e, 1/= upon

which analytical observations shall be made. The simplest example, however, is the golden
mean, which has the greatest level repulsion due to it having the slowest continued fraction
convergence. Then (see Hardy and Wright [10]»= [1,1,1,...] = (1 + +/5)/2 which
givesx, = (v/5—1)/2 =y, and Ingy = N In((~/5+1)/2). This means =0 andP, ,(s)

has non dependency, thus

s —1/V/5 # Lo <35

PGy — s2In((1+ /5)/2) V5 T 25
2++5)/v/5—s if3+«/5<s<2+«/5
s2In((1++/5)/2) 25 0 V5

The cases ofr = 1/+/2, 1/+/5, which both have periodic continued fraction expansions,
give averaged distributions that are similar to those of [5]. For the case of
o = e1 however, a significant difference exists. This has expansipa %
[0,2,1,2,1,1,4,1,1,6,1,1,8,1,1,...] (see [12]) which, satisfying the criterion of the
following result, gives a delta function, whereas [5] reports a non-zero distribution.

Theorem 3 The averaged spacing distribution fer= [ag, a3, ...] is the delta function
8(s) provided (17) is satisfied and

=0. (19)

m —
N—oo In(ay . ..an)

Proof. Note that if thea; are of polynomial order with respect fothen (19) is satisfied
as is (17), which is needed for convergence of the exponential average. By theorem 2

api2—1

P(S) = Nll—r;noom:;]\] Z Z Pn,r(s)-

n<N r=0
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Now define for any smak

1 (l,,+2 1
I(e) = lim / P, (s)ds

N=o0 Inq” n<N r=0
which if shown to be unity proves the theorem.

Note that the only contributions to the integral occur in the cases wheree. By
considering possible values ofone can see that only the first interval of functioBs,
can possibly contribute for small enoughf » = 0. Hence

1 s—so
o= gm o 2 [t

{n<Nl|so<e}
N 1 X
=fim == 3 fine—Inx, + " —1].
N—oo INn gn N (n<NTn, <€} €

The main contributions arise from small valuescpfi.e. the larger, values. So considering
the asymptotics

N
1
N:Hai XN =
i=1

anN+1

then

. 1 1
I(e) = lim —————[lne—-1]+ I|m
N—oo|n l—l,‘:]_ a; N—con l_[ ]_al {n<N|1l/ay+1<€} €dn+1

N e via<ise) %

+ lim v
N=oo N[l ansa

which with (19) gives

lim #[In €e—1] =

N—o |n 1_[ iy
1 .
lim —— < lim =0
N—oo |n 1_[1 161, (<N [Laps1<e) €dp+1 N—oo |n Hi:l a;
Now if
InT] a
. <Nlaps1<e ¥n+l
lim neNlanase =1 (20)
N—o0 In 1_[[:1 a;

then as/ (¢) is just a straight integral of a probability distributioh(e) < 1, and for any
€ > 0, I(e) = 1, which gives the required result. Then it remains to see that (20) is true.
From equation (19), for any (smak) > 03m (k) such thatvN > m(k)

N N
" ke 1In Han>—.
I [Tjucny an (<N} k
Now
INT T nia i=1/e) Gnt1 o INT (e Nyt <1/e) @nt1
In H{ngN} an In H{ngn} an
SO

In l_[{néN\a,L+1<l/e} an+1 kIn H{ngN\a,,+1<1/5} ap4+1 - k |n(1/€)N
In H[ngN} an N N
Then as is fixed at this stagek can be made arbitrarily small, and the result follows.

=kIn(1/e).
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It has since been proved that the Hausdorff dimension of the points satisfying this
condition is%. This can be found in [13].

5. The generic case

The exponentially averaged spacing distribution has been seen to converge for various
examples. However, to get a physically meaningful result the general frequency ratios need
to be investigated. Then genengl and y, are being considered. This can be obtained via
some ergodic analysis, where a generic distributionAas) will be obtained for generic

«, i.e. for all frequency ratios except a set of Lebesgue measure zero. This distribution is
shown in figure 2. The joint distribution of, andy, will be advantageous. First define

T(xnv Yn) = (‘leJrl? yn+l)
then from (8) we find, for/u] = integer part ofn, {m} = m — [m]

(g ) e (@) e
[1/y]4+x 1y x ) [1/x]+y
Then an invariant density can be defined as
1 1
plx,y) = N2 1+ xy)2

which can be shown by direct substitution to obey

p(x.y) = p(T(x,y) = p(T~x, y)).
Then define a measure over,[J x [0,1]=1 x I as

dxd
= [
a (1+xy)

for any subsetd of I x I. The mappingl’ can be seen to be ergodic with respect to the
measureu as follows. First define

x = [0, x1, x2, x3, . . .] y =10, y1, ¥2, ¥3, - . .]
then if T (x, y) = (Ti(x, y), To(x, y)), from (21), for anyk

T]{((xs Y) = [O» Vis Yk—15 Yk—25 « - -5 Y1, X1, X2, . . ]

Tzk(xv y) == [07 Yi+1s Yk+25 - - ]

) 1 2 3 4

Figure 2. The generic averaged spacing distribution.
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So using the invariance of the measure

1 1 1 1
lim / /0 [ )T (x, y) du = lim / f FT e, y) g (T (x, y)) du

n—0c0 Jo
dx dy
(1+xy)?
But sincek can be arbitrarily largeT (x, y) can be approximated arbitrarily closely by the
function Tli(x, y) where

— im / / FT e y)g (T (x, y)) -2

n—o0

—k
T,(x,y) =10, y&, k-1, ---,¥1,0,0,0,...].

Becauseﬁ(x, y) is independent of, the x dependence of(x, y) can be ignored. So
integrate outx from the measurg: to obtain

n—0o0

1
. d
lim / T g ey 1 Y (22)
0 +y

which is just the Gaussian measure. From [11], the Gauss map is mixing, thus (22) becomes

/ F(THx, y))— /O g(T (x, y))—

//f(T(x y))dM// g(T*(x, y))du
=/ / f(x,y)du/ f g(x,y)du.
0 0 0 0

Then since this works for arbitrarily large the required condition for mixing and hence
ergodicity is obtained. Then from the Birkhoff-Kinchin ergodic theorem (see [11]) for
suitably convergent functiong

_ Jx,y)
lim fZN FT ) = mz/ /0 e dvay. (29)
Also by [11]
InqN B 2

lim .
N—oo N 12In2

Although this is proved in [11], equation (23) yields a much simpler proof, given in
appendix B, which is an example of the power of (23). Now (24) means the error term
of (17) vanishes, so combining (18) with these two results, and notingathat= [1/y]
(where the square brackets indicate the integer part), obtain

12 1 1[1/y]-1 dx dy
P(s) = — P(s,x,y)———
(5) 7T2/0 fo ; 65 Ty

which rearranges to give

12 00 1/(r+1) dy
P = f / Plx g

(24)

This is a direct integral, the evaluation of which is briefly outlined in appendix A. Thus we
have
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Theorem 4 The averaged spacing distribution of the spectrum of the quantized two-
dimensional simple harmonic oscillator of generic frequency ratio is

6
— fo<s<1
T
PO=1 6 12[/s-1\2 [s—1\ 1/s—2\2 |s—2 .
— (=) In S In if s > 1.
w2s ;2 s s 4 s s
(25)

Various observations can be made abB() (see figure 2). Firstly, by direct calculation
the total probability and mean, i.¢,° P(s) ds and [, s P(s) ds, can be shown to be unity.
This is not an automatic result of the distributions definition because, althBugty) will
have an average and total probability of one, in the limitof> oo this may not be the
case. Take the situation of theorem 3, for example, where the total probability is unity but
the average is zero. For largewe find from the expansion of (25)

S 4
P(s) = e +0O(s™.

Now the mean of the distribution is unity, thus the variance of the distribution is found
from

Var(s) = foo(s — 1)?P(s) ds.
0

However, the integral will then have a term of ordefs@) to be integrated ovefl, co)

which is divergent so the variance and hence the standard deviation is unbounded. The
distribution can directly be seen to be@ function. From figure 2 the reduced level
clustering expected from the papers of Pandewgl [8, 9] can be seen.

6. Conclusions

It has been shown by Pandey al [8, 9] that the level-spacing distribution for the two-
dimensional harmonic oscillator is unstable. By defining a suitable average, a level-spacing
distribution that converges under this semiclassical limit was obtained. This is unstable to
perturbation of the ratio however, with a dense set of ratios having a delta function as the
level-spacing distribution (by theorem 3). This set has Hausdorff dimer%siae shown in

[13]. This differs significantly from the Poisson universality class associated with integrable
systems.

Although the exponential average has been shown to converge, nothing has been stated
about the magnitude of the oscillations®fs, U) with U. The variance of these oscillations
can be defined, but does not yield easily to the type of analysis applied above.

This type of analysis cannot be extended easily to higher dimensions due to the lack of
continued fraction theory that works so well in two. Using the Jacobi—Perron generalization
(see [14]) is a possible further study. From the analysis for two dimensions, it is not clear
that a stable distribution will necessarily be found in higher dimensions.
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Appendix A

Here the evaluation of

2r =00 1/(r+1)
P.(s,x,y) Al
> [Porn 2 (A1)
is given, where
P fsess<sm
Pr(S»x»)’)Z s (A2)
§2 — 8 .
3 if s <s <o
N
and
i=(x+r+i)(1—ry). (A3)
1+ xy
Integrating with respect to first, by defining
1/(r+1) dy
(s, %) = Pr(s,x, )~ A4
o= [ BeE g (a)

the following functions over the various intervals indicated are obtained. The functions are
added whenever the intervals overlap:

06 m oyt Y <
r ’ = 55 P \r
5o 252 s(x+r) 2x+r)? r+x+1 S *
(s, x) = 1+ ! + 1 Y i<t
Y s(x4+r+1)  252(x +r +1)2 Frx41 08
_ 1 (-1%2 1 1
r\o, = — 5 - 1< < 1
Q,(s, x) 2 2 x+r+x+r+1 s<x+r+
I 1 1 1—=s 1 r+x+2
r(8,X) = 5 I<s<———
Qr(s. ) Zs +2s2(x—|—r+1)2+ s2 x+r+1 s r+x+1
(s—Z)2 1 1 x+r+2
. - <5 < 2
0r(s, ) = 452 Ax+r+2 xtr1 >’ rhrd
Thusy has been integrated out and théntegral remains. From equations (A1) and (A4)
12
P(s) = — fQ,(s,x)dx. (A5)
4 r=070
So defining
1
R = [ oG (A6)
0

will just leave the summation to be calculated. ThRr(s) will be calculated for various
intervals ofs, again the functions being added where the intervals overlap. Then

1 1 1
R,(S):a(s):m-i-é-f-gh’](l—s) 0<S

1 1 1
R,(s):b(s):?—f—}—glns
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R.(s) = ¢, (s) = 1 r 1In s 1—s+l
) =erld T 2s(1—3s) 252 g r(l—ys) 2s 2r
r <s<r+1 F>1
r+1 r+2

1 (r—{—l)_ 1 1 r+1<

1
R(s) =di(s) = — — In = <
) ) 252 s r 21+7r) + 2r r+2

Rs) = en(s) = ~ (Ar—s)— Sin( T2 t 41 <s<r+1
r$)=¢€$)= 55 r—s)—— — — r<s<r
252 s s 204+r) 2

R = f(s) =y = 5 T L L
P =S = e T =) s\ + DA —) 22 T 22(r + 1)

r S<r+1 F>0

r+1 r4+2

1 1 [(r42 1 1 r+l

R, = &r = "5 —1 - < <1
(5) = 8 (s) 2s2+ (r—i—l) 2s2(r+2)+2s2(r+1) r+2 s

1 —1\° 1 2
R, (s) = h,(s) = ——(S )In(r+ >+In<r+ > 1<s<r+1
52 s r r+1

—r=2 —1)? 1 2
R,(s):i,(s):s srz _<Ss )ln(;f].)—l—ln(r_: ) r+1<s<r+1

R.(5) 5) = 1 1 N 1 +1—s| r+2 1< <r+3
s) = jr(s =3 S X
/ 252 252(r +2) ' 252(r + 1) 52 r+1 r+2
R.(s) = k. (s) 1 r+1 s—1+ 1 +1—s 1
A (8) = k. (s) = — —

252(s — 1) 252 252 252(r + 1) 52 s—D@r+1

r+3<s<r+2

r+2 r+1

1 1 r+1 (s—2)7% r+1Ds—1)
R.(s) =1, In
O =bO) =5G22 T 22 452 25

_1. r+3G -1 r+3<s<r+2

4 s r+2 r+1

1 (s — 2)? r+1 1 r+3 r+2
R, (s) = m, In —n Ss<r+2
@ =m) =55+ "4 r 4 r+2 rp1SESTT

3+r— (s—2)2 r+1 r+3
Ro($) =nr(e) = ="+

r+2<s<r+3.
Now

12 &
PG = ; R.(s5) (A7)

so to find P (s) just sum upR, (s) over the various intervals listed above. First consider the
interval 0< s < 3, where

12 6
P(s) = lals)+ o)l = .
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Now for the interval} < s < 3,

12 5
P(s) = ?[b(s) + c1(s) + f1(s) + go(s)] = —

Consider the intervals’; < s < 7f5 for r > 2 to give

P(s) = [b(s) +er(s) + Zd (5) + fr(s) + ng(w]

which yields the same value on substitution. THRg) = ? for0<s <1
Now consider-3 < s < 2 for r > 1, where

12 >
P(s) = [Zd <s>+e1(v>+2h (S)+lo(T)ZJu(S)+k ©)+L)+ ) mv(s)]

v=r+1
1271 1 3 (s —1)2 (s — 2)2
P(s)=— | = - ——]In In(s — In(2 —
s = 2 (S O e P
which is independent of, so true for the rangeisgg. For%gsgz

12 o0 o0 o0
PG = 5 [ D dy(s) + ex(s) + Zhv(w + io(s) + ko(s) + lo(s) + vam}
v=2 v=1
1271 1 3 (s —1)2 (s — 2)2
P |:2S + (S — 4> Ins 2 |n( -1 - 452 |n(2 —5)

which is now for the range ¥ s < 2. Finally consider ranges for> 2 of r <s <r+1
to give

— P(s) =

P(s)[ D d (s)+er(s)+2h (8) +ira($) + ) mv<s>+nr_z<s>}
v=r+1 v= v=r—1
1271 1 3 (s —1)2 (s — 2)2
— P(S):71’2|:2S+(S_4> Ins + 2 In(s — 1) — 452 |n(s—2):|
which altogether give the function outlined above, i.e.
° if0<s<1
b
PO=1 6 12[/s—1\ [s—1\ 1/s—2\2 [s—2 ,
— t S|l In - = In ifs>1
TS T s s 4 s s
(I
Appendix B

As has already been remarked, in [11], the following asymptotic formula is proved:
72N

12In2

Using equation (23), the same result can be obtained as follows:

Inqnzln(q”q"_lm ) Z In x,,.

qny dn—-2 (n<N}

Ing, =




The generic spacing distribution of the 2D harmonic oscillator 4081

Then by (23)

Inx N (! Inx 72N
Ing, ~ dyde= - — [ 5 de= 22
1 In2/ /o Atxy2 ” n2J, 1+x 12In2

This a lot simpler than the proof in [11], and a good example of the power of (23).
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